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Oscillatory Flow in Arteries: the Constrained Elastic Tube as a 
Model of Arterial Flow and Pulse Transmission 

By J. R. WOMERSLEY 
Aeronautical Research Laboratory, 

Wright Air Development Center, Dayton, Oluo, U.S.A. 

5 1. I, YTRODUCTIOS 

THE study of the propagation of pressure waves in a viscous liquid 
contained in an elastic tube goes back at least as far as the work of 
Witzig (1914). In a recent paper, Morgan and Kiely (1964) made a 
number of shrewd and pertinent criticisms of earlier work, and gave two 
approximate analytical formulae for the pulse-velocity for two sets of 
limiting conditions. characterized by them as liquids of ' small ' and 
' large ' viscosity. 

In an independent attack on this problem (Womersley 1955a), the 
author showed that the variation in pulse-velocity with frequency and 
viscosity can be expressed as a function of a single non-dimensional 
parameter, a,  where 

K = R  d f i / v  

R being the radius of the tube, n the circular frequency (i.e. the frequency 
in cycles per second multiplied by 2 r )  and v the kinematic viscosity of the 
liquid. The variation in pulse-velocity with a was computed from 
a=l to K = I O  by steps of 0.05. together with the damping coefficient, 
and the quantities required for the calculation of the rate of flow from 
the pressure gradient. and tables of these quantities have been prepared 
by the Computation Laboratory of Harvard University (Womersley 1957). 
It is the purpose of this paper to show that by the modification of a single 
parameter (the ratio of the wall thickness to the radius of the tube) the 
equations of Womersley (1955 a )  can be used to describe the motion when 
the tube is ' loaded ' with added mass which increases its inertia without 
taking part in the elastic deformation. and ' tethered ' by a longitudinal 
elastic constraint. If this constraint is very stiff, i.e. if it has a natural 
frequency that is high compared with the pulse frequency, the solution 
for this limiting condition is a particularly simple one. The relationship 
between pressure gradient and rate of flow reduces to that for a rigid 
tube. but the pulse velocity remains finite and its variation with frequency 
takes a very simple form. It is also shown that some experimental 
results obtained by Lawton and Greene (1956) are in fair agreement 
with the assumption that the limiting condition of stiff constraint applies 
in the abdominal aorta. This evidence. taken together with the agree- 
ment between measurements of flow made by McDonald (1955) and the 
formula for oscillatory flow in a rigid tube, indicates that this sirriple 
theory is adequate. 
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5 2. THE ' FREQUENCY EQUATION ' FOR THE PULSE-VELOCITY 
The equations of motion of the tube with added mass, but without 

longitudinal Constraint, were given by Morgan and Ferrante (1955) but 
were not discussed in detail by them. If the thickness of the tube is h, 
p its density, and h,, R,, p l ,  are the thickness, mean radius, and density 
of the surrounding mass, Morgan and Ferrante state that the thickness, 
h, is to be replaced in the original equations of motion by a quantity H' 
where 

H' - h = (I+ 3. el). PR . . . . . . . (1) 

If, in addition to this mass-loading, there is an elastic constraint which 
affects the longitudinal motion of the wall, and that alone, the equat'ion 
of motion for the longitudinal displacement is 

in which 4 2 7 r  is the natural frequency of the longitudinal constraint. 
Equation (2) above replaces eqn. (16) of Womersley (1955 a). The 
notation is the same as in that account, viz. 
[=longitudinal displacement of the wall ; f=ra&al displacement of the 
wall ; B=E/(I -u2), E=Young's modulus, a=Poisson's ratio ; w=longi- 
tudina,l velocity of the liquid; and y=non-dimensional radial co- 
ordinate = r/ R. 

If now eqn. (2) above replaces eqn. (16) of Womersley (1955 a), and the 
resulting set of equations is solved in the same manner, the form of the 
frequency-equation for the wave-velocity is unchanged. 

where 

It is 

(1-~2)22+2Gx+H=O . . * . . . (8) 

x=kB/pc2, c= wave-velocity 

and 

the function which appeam in the simple theory of oscillatory flow in a 
rigid tube, and whose modulus and phase have already been tabulated 
(Womersley 1955 b). Equation (3) has exactly the same form as eqn. (39) 
of Womersley (1955 a), The only difference between them is in the 
definition of K. For the tube with added mass and longitudinal con- 
straint 
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A number of interesting conclusions follow almost immediately from 
(4). If the frequency of the oscillation is the same as the natural fre- 
quency of the constraint (m=n), K=O and the tube behaves as though it 
had zero mass. If m >n, K is negative, and if m Bn, i.e. if the constraint 
is very stiff, and if the mass-factor is large, K i  - 00 and eqn. (3) 

( 5 )  --z+ - -0 - 

(6) 

reduces to 2 . . . . . . .  
1 - 4 0  

1 -&o 

2 . . . . . . . .  i.e. z= -. 
We have, therefore, 

1-u2 
(1 -G2)&X= - . . .  

I-&” 
. . . . .  (7)  

Defining the pulse-velocity for a liquid of zero viscosity as c,, we have 

and 

From eqn. (48) of Womersley (1955 a) the motion of the liquid is given 
b s  

the formula for 7 being (eqn. (47) of the same) 

inserting the value of x from (6) this becomes 

1 - 1-F1, 1-2rr -- - ’= Flo--20 F10-2u 
so that (10) becomes 

In terms of the pressure gradient this may be written 
w= 1 A { 1- JO(ayi3’2)} exp (int) 

inPo . J , ( a P )  
which is the same as the form for the rigid tube (Womersley 1955 b),. 
This follows from the fact that if 

p=A,exp ( in (t-zit)) 
ap in 
a2 c --=- . A . exp {in (t-zit)) 

- A , .  exp { in  ( t -z /c ) )  - - - 
a2 

ar, and therefore if 

. . . . . . . . .  ( 1 3 )  
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It would be expected, from physical considerations, that if the longitudinal 
constraint were stiff enough to inhibit the longitudinal motion of the wall, 
the longitudinal velocity of the liquid would have to reduce to  zero a t  the 
wall. The fact that 7 -+ - 1 as K += - CO is, therefore a check on the 
accuracy of the analysis. 

If, following the notation of the previous paper (Womersley 1955 a)  
we write 

co/c =x- i Y 

C1=C,/X 

the wave velocity, c1, is given by 

and the damping-coefficient by SrYi'X, the amplitude being reduced in 
the ratio exp ( -2rYIX) for each wavelength of travel. 

In fig. 1 the variation of cl/co with U is shown for U=$, K=O, -2, and 
fig. 2 shows similar graphs for exp ( - - 2 ~  Y / X )  

In  the limiting condition of stiff constraint, 

the quantities Mf10  and ellO having been previously tabulated (Womerslep 
195.5 b). For these conditions, therefore, 

c1 -= ("lo)l'z . sec . . . . . . 
CO y'jl--2) 

(15) 

(16) . . . . . . . a .  

27r Y - = tan X and 

It will be noted that the rat'io c lp0  does not tend to uriity as x --f CO. 

co is not the corresponding wave-velocity when K --f CO, but the limiting 
value for the same tube without constraint, and this increase in c1 
shows the stiffening effect of the longitudinal constraint. Comparison 
with the corresponding quantities for the freely-moving tube with U= 4 
shows that for the constrained tube the amount of damping in transmission 
is increased. This might at  first sight seem to be an argument against the 
constrained tube as an arterial model. Moreover, the . peaking ' effect 
on the pulse-wave due to variation in wave velocity with frequency will 
also be small, as may be seen from fig. 1. In fact the rise in pulse-pressure 
during transmission is caused by reflections a t  junctions ( Womersley. in 
preparation), and the attenuation due to  viscosity is no bar to  the accept- 
ability of the constrained tube as a model of an artery. 

8 3. PRESSURE-FLOW AND PRESSURE-DIAMETER RELATIONSHIPS 
From the point of view of physical principles, the motion of the liquid 

is best understood in terms of the dependence of flow on the pressure- 
gradient. The analogy between pressure-gradient and voltage, and 
between rate of flow and current, leads to the concept of fluid impedance. 
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However, if the pressure-gradient is created by a travelling wave, there 
is a simple relationship between the pressure gradient and the pressure 
itself, and the rate of flow can be expressed in terms of the pressure. 

We have 

( 1 7 )  

where it is to be noted that in this formula c must be in its complex form. 
Since c,/c=X--iY, 

- w= - ’ . M”,, exp (ie“lo) . . . . . . 
P C  

so that the effect of the damping of the wave in transmission is to reduce 
the phase advance of flow over pressure. In  the limiting condition of 
stiff cons traint , 

so that in these circumstances the maximum phase-lead of flow over 
pressure will be 45’. 

These formulae no longer hold if there is any appreciable reflected 
wave. For consider 

p = A ,  exp (in(t--z/c))+A2 exp (in(t+z/c)}. . . . (20) 

The formula for the average velocity will now be 

c= e. exp (in(t-z/c))- - -4 . exp { in( t+z/c) ) }  M ” ~ ~  exp ic’t10 
P C  

and therefore, at a particular value of z, say a t  z=0, 

This shows that the rate of flow cannot be calculated from a single 
pulse-pressure measurement unless the relative phase and amplitude of 
any reflected wave that may be present is also known. This does not’ 
apply to the relatibnship between pressure-gradient and flow. 

In the previous paper (Womersley 1955 a)  it was shown that a simple 
relationship exists between radial expansion and the average velocity 
across the tube at any instant. It is 

26 z=; . . . . . . . ( 2 2 )  

where it is to be noted that, c must be in its complex form. This relation- 
ship can be deduced very simply from the equation of continuity. For, if 
w is the longitudinal velocity and U the radial velocity the equation of 
continuity is 

i a  aw 
r * ar as 
- -(ru)+--0 
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and if u=uI exp ( in(&-z/c)) ,  w=wl exp (in(&-z/c)} then 
- i a  -((rul)=in- W1 
r ' a y  C 

and, therefore, writing r/R=y and integrating from y=O to y= 1, 
inR 

[ % l Y = l = =  2c .6  

36 
at 

But at y= 1, U= - and therefore 

If the formula for the average velocity in terms of the pressure is inserted, 
this becomes 

This may also be written 

25 F=pc ,  Pz(l--O~)tf"(l+?pl,) . . . . . ( 2 6 )  

For all finite values of K ,  the phase of the complex quantity 

is positive, so that expansion always leads pressure. 

form. 

X( l+Fl,) 

For the condition of limiting constraint this takes a particularly simple 
When K -+ - co9 7 --f - 1, and 3. --f l,'l-.Flo, so that 

and when a=i., 

Pressure and expansion will be in phase at all frequenries. 
These formulae mmecting the harmonic compoimits of the variations 

in pressure with the corresponding variations in diameter take the same 
form when there is a reflected wave present. 

For. if 

p = A  exp [in(t--z;c) ) + A 2  exp ( i n ( t+z j c ) )  

A2 exp [in(f--zjc)]- - exp l in(t+z/c)] Mn10 exp (ie",,) 
P C  

anti 

P =in . -. X n l ,  exp (ie'r,o) 
PC2 

and onsuhst,itution in the equation of contimiity, eqn. (26) will be obtained, 
as before. 
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,4n experimental confirmation of (26) can be obtained from some 
:results recently published by Lawton and Greene (1956), two sets of 
which are shown in figs. 3 and 4. The observed points are joined 
by straight lines. The circles are points on a four-harmonic Fourier 
series fitted to the observations. The close coincidence in phase between 
pressure and diameter is immediately evident to the eye. The table 
gives the phase-lag of diameter behind pressure for the separate harmonics 
Qf the two curves. 
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The amplitude of the third and fourth harmonics was small, that of the 
third harmonic being a little less than one-sixth of that of the funda- 
mental, that of the fourth harmonic about 5%. It would seem that 
until measurements of greater accuracy become available, the simplest 
form of the theory (i.e. K=- CO) will be reasonably adequate. 

M.B. N 
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In the consideration of pulsatile flow in arteries, the conditions of oscillatory flow in a 
thin-walled elastic tube (Womersley 1955 a) have to be modified owing to the ‘ tethering ’ 
effect of the connective tissue and the mass of the adjacent organs. It is shown that by 
modification of a single parameter (the ratio of the wall-thickness to the radius of the tube} 
the equations of the earlier paper can be used to describe the motion when the tube is 
constrained as it  is in the living body. I f  the longitudinal constraint is very stiff the 
solution is a simple one, for the relationship between pressure-gradient and rate of flow 
reduces to that of the rigid tube (U‘omersiey 1965 b) but the wave velocity remains finite. 

The application of the theory to the relation of arterial dilatation and pressure show 
that it predicts the data as accurately as the experimental measurements allow. 

RESVME 

Afin de pouvoir examiner le courant b pulsations dans les arteres, on doit modifier les 
conditions du flux oscillant, dam un tube 6lastique a parois minces (Womersley 1965 a) vu 
I’influence ‘. freinante ’ du tissu cohectif et de la masse des organes voisins. On montre 
qu’en modifiant un seul parametre (le rapport entre 1’6paisseur de paroi et le rayon du tube) 
on peut employer les 6quatiom d6riv6es dans un article.ant6rieur pour deerire le mouve- 
ment, si le tube est contraint ainsi comme c’est le cas dans un organisme vivant. . Si Is 
contraint,e longitudinaie est tres rigide, la solution est, bien simple, parce que la relation 
entre le gradient de pression et la velocitB du courant est rBduite a celie obtenue pour un 
tube rigide (Womersley 1955 b), tandis que la vBlocit6 d’onde continue d’Ctre h i e .  

L’application de la th6orie a la relation entre la dilatation artkielle et la pression montre 
que la thkorie pr6dit les resultats aussi exactement que le permettent, les mesures experi- 
mentales. 

ZDSAMMENFASSUKG 
\Venn man die pulsierende Stromung in Arterien betracht.et, muss man die Bedingungen 

der oszillierenden Stromung in einer diinnwandigen elastischen Rohre (Womersley 1955 a) 
i nfolge hemmender Wirkung des Bindegewebes sowie der Masse der h’achbarorgane 
abandern. Es wird gezeigt, dass nach Veranderung eines einzelnen Parameters (des 
Verhaltnisses zwischen Wandstarke und Rohrenradius) die in einem friiheren llufsatz 
angegebenen Gleichungen zur Beschreibung der Bewegung (falls die Rohre, wie im leben- 
digen Korper, verjiingt ist) benutzt werden. Falls die longitudinale Fixierung sehr steif 
ist, ist die Losung der Gleichungen sehr einfach, da dann die Abhgngigkeit zwischen dem 
Druckgradienten und der St,romungsgeschwindigkeit derjenigen in einer steifen Rohre 
gleich wird (Womersley 1955 b), wobei jedoch die Weilengeschwindigkeit endlich bleibt. 

Die Anwendung der Theorie zur AbhSingigkeit zwischen der arteriellen Ausdehnung und 
Druck zeigt, dass die Ergebnisse so genau von der Theorie vorausgesagt werden, wie es die 
Experimentalmessungen erlauben. 
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